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Abstract—Alzheimer’s disease (AD) is the general form of dementia, leading to a progressive neurological disor-
der characterized by memory loss due to brain cell damage. Artificial Intelligence (AI) assists in the early identi-
fication and prediction of AD patients, determining future risks and benefits for radiologists and doctors to save
time and cost. Since deep learning (DL) approaches work well with massive datasets and have recently become
helpful for AD detection, there remains an area for improvement in automating detection performance. Present
approaches somehow addressed the challenges of limited annotated data samples for binary classification. This
contrasts with prior state-of-the-art techniques, which were constrained by their incapacity to capture abstract-
level information. In this paper, we proposed a Siamese 4D-AlzNet model comprised of four parallel convolutional
neural network (CNN) streams (Five CNN layer blocks) and customized transfer learning models (Frozen VGG-19,
Frozen VGG-16, and customized AlexNet). Siamese 4D-AlzNet was vertically and horizontally stored, and the spa-
tial features were passed to the final layer for classification. For experiments, T1-weighted MRI images comprised
of four distinct subject classes, normal control (NC), mild cognitive impairment (MCI), late mild cognitive impair-
ment (LMCI), and AD, have been employed. Our proposed models achieved outstanding accuracy, with a remark-
able 95.05% accuracy distinguishing between normal and AD subjects. The performance across remaining binary
class pairs consistently exceeded 90%. We thoroughly compared our model with the latest methods using the
same dataset as our reference. Our proposed model improved NC-AD and MCI-AD classification accuracy by
2% 7%.� 2024 IBRO. Published by Elsevier Inc. All rights reserved.
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INTRODUCTION

Alzheimer’s disease (AD) is a devastating neurological

illness that is rapidly increasing in prevalence across the

world. This disorder is becoming increasingly common

as the world population ages, which has severe

consequences for individuals, communities, and

economies (J. T. Wang et al., 2022). In 2020, it is pre-

dicted that there will be over 50 million individuals living

with dementia globally, with AD accounting for almost

two-thirds of all cases. The number of people living with

dementia is expected to rise to 152 million by 2050, put-
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ting a heavy burden on healthcare services and infrastruc-

ture (Heising and Angelopoulos, 2022). The chance of

developing Alzheimer’s increases with age. After age

65, the disease incidence doubles around every five years

(Wen et al., 2020). Medical costs, long-term care costs,

and productivity losses were all factors in the worldwide

projection of one trillion US dollars for dementia care in

2019. Caregiving is difficult for AD patients (Mingxia Liu

et al., 2019b). Over 11 million unpaid caregivers in the

United States assist those with AD and other forms of

dementia. Alzheimer’s disease remains incurable after

decades of study (Hazarika et al., 2023). However, there

have been substantial efforts to discover disease-

modifying therapeutics. Although significant, the global

investment in Alzheimer’s research remains insufficient

compared to the illness’s effect (Puig-Parnau et al.,

2023). In AD, amyloid plaques and tau tangles build up

in the brain, causing cell loss and cognitive deterioration

(Joy et al., 2018).
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Medical imaging modalities encompass a range of

techniques, such as MRI, PET, fMRI, and EEG images.

The utilization of MRI-scanned data offers significant

advantages due to their enhanced spatial resolutions,

enabling the visualization of image features that help

diagnose various diseases (Ferreira et al., 2018). At the

macroscopic level, alterations in brain morphology are of

significant importance in identifying and assessing AD,

often characterized by the presence of front temporal lobe

atrophy (Hampstead et al., 2022). Reduced brain tissue

within this specific region leads to a decline in the func-

tioning of the amygdala and hippocampus (Xiao et al.,

2023). Experts are investigating strategies to identify this

condition earlier to improve therapeutic interventions

(Plachez et al., 2023). Recent research suggests that

the disease may start damaging the brain years before

symptoms become apparent, emphasizing the impor-

tance of early detection and intervention (Peng et al.,

2022).

Medical experts face many challenges during manual

processing, and many other physical checks cannot

produce sufficient results. Because monitoring the

molecular changes in the different regions of the brain is

very difficult to access. Moreover, manual procedures

require a longer time and also need direct interaction

between patients (Grundman et al., 2002). When neuro-

logical images are processed correctly, suitable features

and diagnostics that can be effectively used to differenti-

ate different stages of AD may be obtained. According

to the brain’s complex structure, getting the correct infor-

mation from the other brain regions is very challenging for

multiple traditional neuroimaging tools and pre-

processing pipelines (Manhua Liu et al., 2018). Previ-

ously, many machine learning and DL-based studies have

struggled to identify Alzheimer’s and dementia stages in

the early stages. Due to less helpful information or fea-

tures, it impacts the performance of the detection models

(Billeci et al., 2020).

Currently, identifying MCI in the early stages proves to

be a challenging task, mainly when working with limited

annotated data samples and extracting detailed feature

maps. The MCI stage is a crucial phase in the evolution

of AD, occurring between normal cognitive function and

the decrease leading to LMCI. LMCI represents a

significant decline in both functional and mental abilities.

We have developed creative strategies utilizing

advanced deep learning and transfer learning models in

response to the limited availability of annotated data

samples. Our proposed model, Siamese 4D-Alznet,

effectively addresses the challenge by extracting

detailed feature maps from annotated data samples.

Here are the highlights of the proposed work.

� Introduced the Siamese 4D-Alznet, which combines

five distinct blocks of CNNs.

� We proposed three custom TL models incorporating

frozen and replacing layers.

� Our methods prove 95.07% binary classification per-

formance in terms of accuracy.

� All techniques performed best for NC, EMCI, LMCI,

and AD classification.
Related work

The integration of structural and functional connection

characteristics in brain research is of great significance,

as it plays a crucial role in enhancing the clinical

assessment of cognitive impairment. Although it is

essential to combine these factors, successfully

combining the structural and functional characteristics to

understand the complexities of the brain network is still a

difficult task. Tackling this difficulty is essential for gaining

new understanding of brain function and malfunction,

which might have significant consequences for improving

diagnostic and therapeutic approaches in the field of

cognitive health (Zuo et al., 2023). Furthermore, The highly

linked multilayer algorithms’ substantial enhancement in

binary categorization performance indicates that the CNN

is effective in addressing the prevalent issue of class

imbalance (Hu et al., 2020). Examining the responses of

the feature representations associated with the image

makes it possible to investigate the exact regions that

contribute to the prediction (Yu et al., 2023). Themultilayer

computational model is specifically designed to produce a

sequence of sub-fund visuals that include relevant local

characteristics (S. Wang et al., 2021).

AD studies constantly explore many approaches to

predict future states using biomarkers and automated

detection. In this context (Amoroso et al., 2018), the

authors have outlined a random forest-based approach

for feature detection. The model was trained on four dis-

tinct classes, but the ML technique yielded a relatively

low accuracy score, achieving around a 79% performance

rate. The authors employed the CNN Cascade method for

automated feature detection. During preprocessing, 397

subjects were included, comprising 100 NC individuals,

93 AD patients, and 204 subjects with MCI, and a catego-

rization accuracy of 93.50% was achieved (Manhua Liu

et al., 2018). Researchers employed a hybrid approach,

combining data samples from sMRI and DTI, with a pri-

mary focus on the region of interest (ROI) of the hip-

pocampus (Lin et al., 2018). The main objective of this

article is to forecast the conversion rate from MCI to

AD. Initially, they processed the MRI data and registered

all the samples. Subsequently, they extracted local

patches from the processed data samples to create input

samples for the CNN models. Pre-processing involved the

utilization of the FreeSurfer tool, which resulted in an 80%

performance rate (Vasant et al., 2019).

Moreover, the authors discussed an additional 3D-

CNN method applied to early AD detection, utilizing

fMRI data samples. This approach involves extracting

spatial information from the 4D volume, effectively

addressing processing challenges (Wu et al., 2020).

The primary goal of this study was to work with ADNI-1

and ADNI-2 datasets and detect MCI and AD. The

authors employed 2D and 3D-CNN models, achieving

an 89.42% performance in distinguishing NC-AD. A note-

worthy contribution of this research was the utilization of

ADNI-2 data in conjunction with a 3D-CNN model (Gu

et al., 2018). A novel deep CNN-based technique that is

more focused on the prediction of mental status assess-

ment (MSA) and AD detection was introduced by the
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researchers. They used a total of 331 subjects that belong

to the fMRI modality. Transfer learning is a notable ML

technique renowned for its capacity to yield superior

results even when dealing with limited data samples

(Franciotti et al., 2023). Oktavian et al. (2023) proposed

an alternative transfer learning model that handles two

distinct modalities, MRI and PET. They employed

ResNet18 with fine-tuning to classify the three classes

of AD. Heising and Angelopoulos (2022) introduced

another LENet-5 model for the detection of early MCI. A

total of 3312 participants were included in this study,

and the BET-2 tool was used for skull stripping and pre-

processing the data samples. Two activation functions

were employed to identify better performance, resulting

in an achieved 84% accuracy.

Odusami et al. (2022) employ two transfer learning

models with MRI data. During the experimental phase,

the authors combined these two modified models to intro-

duce a hybrid model primarily based on ResNet and Den-

seNet architectures. This hybrid model achieved a

98.90% accuracy for multiclass classification. Research-

ers (Pandey et al., 2022) introduced five pre-trained mod-

els for the early detection of AD and MCI. The pre-trained

models had initially been trained in a different domain and

were subsequently fine-tuned using MRI data to obtain

classification results. GoogleNet achieved a binary classi-

fication accuracy of 96.81%. In their study, authors

(Deepa and Chokkalingam, 2022) recommended a cus-

tomized VGG-16 model for AD detection. They employed

the CAT12 (Gaser et al., 2022) tool for pre-processing T1-

weighted MRI data to prepare it for input into the cus-

tomized VGG-16 model. The suggested model achieved

an accuracy of approximately 98% by utilizing various

optimization functions. Nevertheless, researchers have

developed different DL and transfer learning models for

AD classification. Researchers utilized MobileNet models

based on transfer learning. They improved the classifica-

tion results, achieving a 96.61% performance by incorpo-

rating learnable weighted pooling layers (Xing et al.,

2023). In another research study, multiple CNN and

RNN models were proposed for analyzing 2D and 3D

MRI data. Upon completing the analysis, the final model

achieved a classification accuracy of 96.88% (Ebrahimi

et al., 2021).
EXPERIMENTAL PROCEDURES

Preprocessing of dataset

The most frequently employed database for early-stage

AD detection is the ADNI. Dr. Michael Weiner directed

the development of this comprehensive database, which

was established through a public–private partnership

with a primary focus on utilizing various modalities,

including MRI and PET scans, among others (https://

adni.loni.usc.edu/data-samples/access-data/). The ADNI

team primarily emphasizes the assessment of biological

biomarkers and monitoring of physiological changes in

AD patients. The ADNI database contains both T1 and

T2-weighted MRI scans, although this article utilizes

explicitly the T1-weighted MRI modality (Jack et al.,

2008). Four categories are employed to facilitate early
AD detection: NC, MCI, LMCI, and AD. A total of 310 sub-

jects are distributed across these four classes. Further-

more, demographic details for all participants are

provided in Table 1, which displays the mean age for each

of the four datasets and the gender distribution within

each group. The mean Mini-Mental State Examination

(MMSE) score is also included.

Each data sample collected from the database

predominantly comes with a NIFTI extension. During the

experimental process, these data samples are

transformed into 2D slices and converted into PNG or

JPEG image formats before being fed into the deep

learning model. After data extraction, further

preprocessing is necessary to enhance the quality of the

scans, thereby enabling the extraction of more valuable

features and achieving improved classification results.

Numerous tools are available for MRI data

preprocessing. In this study, we employed the SPM-12

(Friston et al., 1994) to perform multiple operations aimed

at enhancing the quality of the scans. For example, a crit-

ical step involves skull stripping, which entails removing

the upper portion of the skull from the brain images. Addi-

tionally, image registration plays a pivotal role in improv-

ing feature visibility. Following this, image normalization

is crucial to eliminate minor noise artifacts present in the

images and standardize the data to a homogeneous for-

mat, thus reducing noise and ensuring the consistent

intensity of scans, which facilitates the detection of vari-

ous brain regions. Finally, segmentation is another vital

step in the preprocessing pipeline, wherein the entire

MRI dataset is partitioned into white matter, gray matter,

and cerebrospinal fluid components.
Proposed Siamese 4D-AlzNet network

In this part, we present the Siamese 4D-AlzNet network

for the classification of AD, which has several CNN

layers for early identification of MCI. The suggested

architecture makes use of four CNNs streams with

shared parameters to generate a feature value as an

output depicted in Fig. 1. Consider T1-weighted images

xi; yið Þ; i ¼ 1; 2; :::; nf g containing n feature vectors

xi 2 Rm, each of size m, and labels yi 2 1; 2; :::; n1f g
First, create an initial training set

ADs ¼ xi; xj; xk; xl; zij
� �

; i; jð Þ 2 k
� �

including pairs of

samples xixj and xkxl with associated binary labels

zij 2 0; 1f g named as NC and AD patients. The parallel

execution of four input feature vectors xi, and have their

outputs semantically concatenated and becomes a final

feature vector xu ¼ o1; o2; o3; o4f g. After applying a fully

connected layer, the resultant output is obtained in the

form of y
_ ¼ r xuw1ð Þw2. In addition, the output vector is

also shaped as follows y
_ 2 R1�M where

xu 2 R1�N
,w1 2 RN�L

, and w2 2 RL�O is the number of

features, L is several hidden units, and O is the output

units. r is an activation function that may be applied to

each component of the matrix autonomously. The final

classification result from the training set may be

separated into two subsets: a comparable or NC with

y
_ ¼ 0 and a dissimilar or AD set with y

_ ¼ 0. The cross-

entropy loss is used to optimize the Siamese 4D-AlzNet

https://adni.loni.usc.edu/data-samples/access-data/
https://adni.loni.usc.edu/data-samples/access-data/


Table 1. Comprehensive participant demographic data, including information on subject grouping, age distribution, and MMSE scores. The

experimental process involves a total of 310 subjects

Category NC MCI LMCI AD

Age (±) 73.18 ± 5.56 72.41 ± 4.82 75.84 ± 6.27 78.58 ± 7.61

Subject Size 75 75 80 80

Gender (Male/Female) 45/30 35/40 38/42 46/34

MMSE (±) 28.96 ± 1.01 26.57 ± 1.09 23.97 ± 1.13 22.57 ± 1.05
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Fig. 1. A systematic diagram of the proposed Siamese 4D-AlzNet architecture consists of four inputs and four CNN streams with multiple flattened

outputs. (f1&f2&f3&f4 = flatten output).
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network during training, which evaluates the variance

among the two probability distributions for given random

variables. Binary cross entropy (BCD) is described as:

Xc
i¼1

yi � log p y
_

i

� �� �
þ 1� yið Þ: log 1� p y

_

i

� �� �
ð1Þ

Where, y
_

i ¼ 1 ! log p y
_

i

� �� �
and

y
_

i ¼ 0 ! log 1� p y
_

i

� �� �
.

L2 regularization for the proposed model has been

applied to prevent over-fitting issues. The main

challenge of L2 regularization is described in Eq. (2),

W a matrix containing the parameters of the neural

network; k is a hyper-parameter that regulates the

degree of regularization.

k
X
i;j;l

Wl
ij

� �2
ð2Þ
Convolutional neural network

This study employs CNNs that include Convolutional

(Conv), pooling, and fully connected (FC) layers. CNN

depends on three architectural concepts: sharing

weights, localized receptive fields, and temporal sub-

sampling to achieve invariance in rotation, translation,

and scaling (Mehmood et al., 2022). Here, the Siamese

4D-AlzNet network is comprised of five blocks of Conv

layers, and four max-pooling layers (Pooling-1, Pooling-

2, Pooling-3, and Pooling-4). Here, xixj, xk, xl are the input

images with dimensions of 224 � 224 that have been nor-

malized and aligned, mainly given to block-1. Following

that, every single neuron in the hidden layer receives

input from a group of units situated within a relatively

small neighborhood of the preceding layer. The output

of each convolution block is kept in a vector called flatten

and passed to the max-pooling layer for further sub-

sampling of the feature map. As a result, it can be written

as:
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ho ¼ f x i;j;k;lð Þ � wo þ bo

� � ð3Þ

Eq. (3), x i;j;k;lð Þ is an input tensor that is convolved with a

kernel of weights w, then a bias term b is added, and

finally the output is passed via a non-linearity to the

current hidden layer ho. The improved form of the

convolutional formulae, shown in Eq. (4), is the input of

the feature map for the pooling layer, wl
mo denote as a

weight vector connecting to feature map of the output

layer, and bl
mo as a bias paired with the input signal. As

the outcome, the output feature map in a layer is created

as follows:

hl
o ¼ f

X
m

xl�1
i;j;k;lð Þm � wl

mo þ bl
mo

 !
ð4Þ

Moreover, ‘�’ stands for the convolutional operations,

and f is the activation function of a rectified linear unit

(ReLU) in the hidden layer, as determined by

f xi;j;k;l
� � ¼ max 0; xi;j;k;l

� �
, and Siamese 4D-AlzNet

networks label predictions are made using softmax. The

ReLU activation function offers non-linearity in the

extraction of features, which is far more useful for

training than the conventional and typical activation

functions such as hyperbolic tangent (tanh) and sigmoid.

All blocks convolution phases in the convolutional layers

are similar to block-1 (Conv1), except for the size and

length of the convolutional filters. In CNNs, two pooling

strategies are typically utilized. Local pooling is the initial

technique for displaying feature maps, which gathers

data from relatively tiny local regions (like 3 � 3). The

most significant value of the region is then chosen and

placed in the output’s relevant pixel position. Every

feature vector from the Conv block is passed to the

Pooling (1–4) layers created using the max pooling sub-

sampling technique and applied to the relevant feature

vectors in the preceding layer. The mathematical

illustration is shown in Eq. (5), where the filter height and

width are the coordinates, and hl
o is the output of

block-1 (i.e., two convolutional layers). The benefit of

max-pooling is to build a layered framework for feature

extraction, and it reduces the spatial size of every

feature vector as well as the number of calculations in

the network.

h
_l

o a;bð Þ ¼ max hl
o aþ u� 1;bþ v� 1ð Þ ð5Þ

The Pooling layer result is saved as a separate feature

vector and also sent to the next block of convolutions.

This process will be repeated until all five blocks have

been completed. The resulting vector of all convolution

and max-pooling blocks, as well as all pre-pooling

feature vectors, are now concatenated. The last layer of

the model is the fully connected layer (FC), which works

as a stacked linear classifier. The Softmax classifier will

be given the feature maps with constant dimensions that

are the outcome of the preceding layers. The classifier

output computes the probabilities of the AD classes for

every input image, with the most outstanding value being

the predicted AD class. Fig. 2 depicts the overall

process of the proposed framework, and Table 2 shown

the properties of the model.
Evaluation metrics

Different assessment measures are used to assess the

classification results produced using the Siamese

4D-AlzNet architecture, such as Accuracy, Recall,

Precision, and F1-Score, as shown in Eqs. (6–9). These

measurements provide essential context for

understanding the diagnostic accuracy of the model.

Hence, recall describes the model sensitivity and

reveals the percentage of correctly diagnosed patients

that is crucial for accurate disease detection. On the

other hand, precision measures how many times a

model accurately predicts a good outcome. For the AD

experimental dataset, a model must eliminate false

positives.

Accuracy ¼ TPþ TN

TPþ TNþ FPþ FN
ð6Þ

F1� Score ¼ 2� precision� recall

precisionþ recall
ð7Þ

Recall ¼ TP

TPþ FN
ð8Þ

Precisoion ¼ TP

TPþ FP
ð9Þ
Experimental results of the proposed model

Two strategies are used to classify AD medical images.

The first technique is based on conventional CNN

frameworks that work with brain MRI data using 2D

convolution filters. The designs of parallel CNN blocks

comprised of convolutional and pooling layers are

created from scratch. The second approach makes use

of the pre-trained weights by using transfer learning

methods for medical image classification.

The proposed algorithm is structured around five

distinct blocks of Convolutional Neural Networks

(CNNs), each featuring a varying number of

convolutional layers and convolution filter sizes. An

initial max-pooling operation is applied to the entire input

data sample to initiate the processing. Subsequently,

this pooled input is directed through each of the five

blocks for further refinement. Block 1 comprises two

convolutional layers, each utilizing a 3x3 kernel and

twelve convolutional filters. L2 regularization and ReLU

activation functions are applied within these convolution

layers, and batch normalization is inserted between

these layers. The first intermediate output from Block-1

is obtained by flattening the output and connecting it to

a sigmoid-dense block. Each block retains its feature

map as an output. Block-2 and Block-3 each contain

four convolutional layers with the same kernel size and

number of convolutional filters as Block-1. Block-4 and

Block-5 encompass eight convolutional layers, again

maintaining the same kernel size and number of

convolutional filters as Block-1. In the context of

Siamese 4D-AlzNet, these five blocks concurrently

process the input data in four parallel streams.

Following this, all the feature maps these blocks

generate are concatenated and subsequently forwarded
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Fig. 2. Illustrates the stepwise progression of block-wise convolutional and pooling layers within the Siamese 4D-AlzNet network. This network

consists of five blocks of CNN, each featuring varying numbers of convolutional layers. The first block includes two convolutional layers, while blocks

two and three comprise convolutional layers, and blocks four and five consist of eight convolutional layers. (Abbreviations: FM= Feature Map; FC1

& FC2 = Fully Connected; Conv = Convolution).
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Fig. 3. Loss was tracked throughout the 100 epochs of training for the binary classification tasks involving MCI-AD (A), NC-AD (B), and NC-MCI (C)
classes.

Table 2. Properties of the proposed model in terms of several layers,

feature map, and trainable parameters (CL = convolutional layers,

BN = Batch Normalization, MP = Maxpooling)

No. of

bocks

No. of layers Feature map Trainable

parameters

Block 1 2 (CL + BN) + MP

each sub-block1

FM1, FM2,

FM3, FM4

301,056

Block 2 4 (CL + BN) + MP

each sub-block2

FM5, FM6,

FM7, FM8

602,112

Block 3 4 (CL + BN) + MP

each sub-block3

FM9, FM10,

FM11, FM12

602,112

Block 4 4 (CL + BN) + MP

each sub-block4

FM13, FM14,

FM15, FM16

1,204,224

Block 5 4 (CL + BN) + MP

each sub-block5

FM17, FM18,

FM19, FM20

1,204,224

Table 3. The binary dataset has been partitioned into four distinct

classes, to create separate sets of images for training and testing. To

achieve this partitioning, 80% of the dataset has been allocated for the

training phase, while the remaining 20% has been designated for

testing purposes

Dataset

Classes

No. of

images

(Training)

No. of

images

(Testing)

No. of

images

Total

NC Subjects 2016 504 2520

MCI Subjects 1596 399 1995

LMCI Subjects 2780 695 3475

AD Subjects 2780 695 3475
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to the fully connected layers FC1 and FC2. Using these

feature maps, a Softmax layer is employed to classify

AD stages. The primary goal of the proposed Siamese

neural network technique is to mitigate reliance on

extensive datasets. This approach effectively addresses

the challenge by extracting detailed feature maps from a

limited annotated data sample set, leading to improved

results.

Moreover, this study employed three transfer learning

techniques: customized AlexNet, Frozen-VGG-16, and

Frozen-VGG-19 models with pre-trained weights for AD

image classification. Low-level features are obtained in

the initial layers of pre-trained models, while class-

specific features reside in the final layers. The primary

focus is training the network for a 2D Alzheimer dataset

by replacing the class-specific layers. Specifically, the

first three layers of the AlexNet model were transferred

and replaced with new layers. Similarly, for the Frozen-

VGG-16 and VGG-19 networks, the last four and five

convolutional layers have been frozen, respectively. The

FC layers parameters were carefully considered,

including weight-learning factor, bias-learning factor, and

output size. The output size of this fully connected layer

matched the number of output classes, with the weight-

learning factor controlling the learning rate for layer

weights and a separate bias-learning parameter

controlling the learning rate for layer biases.
The training began with an initial learning rate of

0.0001, with the Adam optimizer facilitating dynamic

learning rate modifications. Training sessions were

conducted with a batch size of 32, utilizing the

computing capabilities of a Precision 7670 Workstation

equipped with an NVIDIA RTX A4500 64 GB GDDR6

and a 12e generation Intel� CoreTM i9-12850HX,

vPro�. An early stop mechanism has been added to the

training routine as an avoidance against over-fitting

issues. Various hyper-parameters for the proposed

model and pre-trained techniques were established

using the hit-and-trial method. During the training

procedure, 100 epochs were utilized with the binary

cross-entropy loss function, and data distribution details

are shown in Table 3.
Performance evaluation for NC-AD

This section describes the simulation results of the

proposed model for five binary classifications. In Fig. 4,

we present a comprehensive assessment of the

performance of these models through confusion

matrices. These matrices illuminate the accuracy and

effectiveness of each model in distinguishing between

AD and NC cases.

In the case of the Siamese 4D-AlzNet model, it

impressively classified 692 scans as AD and 448 as

NC, demonstrating its robust capability in correctly

identifying Alzheimer’s cases. Similarly, the frozen VGG-

16 model exhibited noteworthy performance by

accurately predicting 650 AD and 419 NC images.



Fig. 4. Confusion matrix of Siamese 4D-AlzNet and pre-trained techniques for binary class NC and AD.
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Furthermore, the Frozen VGG-19 model also shows

remarkable performance in classification, correctly

indicating 652 test images. A comprehensive summary

of the performance metrics for all proposed models is

presented in Table 4. It becomes evident that the

Siamese 4D-AlzNet model stands out as the top

performer, achieving an impressive accuracy rate of

95.07% and a remarkable recall rate of 95.90%. This

emphasizes its exceptional ability to distinguish between

AD and NC cases accurately. The frozen VGG-19

model obtained the second-best result for NC-AD
Table 4. Proposed Siamese 4D-AlzNet and three customized models performa

of NC-AD

Metrics Siamese 4D-AlzNet Frozen V

Accuracy 95.07 89.16

Precision 99.56 93.52

F1-Score 95.90 90.90

Recall 92.51 88.43
classification, achieving a praiseworthy accuracy rate of

94.08%. Furthermore, training loss for three binary

classes also shown in Fig. 3.
Performance evaluation for NC-LMCI

The classification score for NC-LMCI classification of all

proposed models are illustrated in Table 5, where the

Frozen VGG-16 based approach attained (96.91%

accuracy, precision of 77.98%, and F1-score 87.34%),

similarly Frozen VGG-19 (accuracy of 94.58%, precision
nce w.r.t accuracy, precision, F1-Score, and recall for the classification

GG-16 AlexNet Frozen VGG-19

76.81 94.08

80.57 93.81

79.02 94.83

79.65 95.88



Table 5. Proposed Siamese 4D-AlzNet and three customized models performance w.r.t accuracy, precision, F1-Score, and recall for the classification

of NC-LMCI

Metrics Siamese 4D-AlzNet Frozen VGG-16 AlexNet Frozen VGG-19

Accuracy 96.75 86.91 89.15 94.58

Precision 98.56 77.98 83.16 91.22

F1-Score 97.22 87.34 89.88 95.12

Recall 95.93 99.26 97.80 99.37

Fig. 5. Confusion matrix of Siamese 4D-AlzNet and pre-trained techniques for binary class NC and LMCI.
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91.22%, F1-Score 95.12%, and Recall 99.37%). Finally,

Siamese 4D-AlzNet produced the best result (accuracy

96.75%, precision 98.56%, F1-Score 97.22%, and

Recall 95.93%). The results of this study are shown in

Fig. 5 as a confusion matrix based on the optimum

performance of each model.

Performance evaluation for NC-MCI

Table 6 visually represents the results obtained from our

comprehensive metric evaluation for binary

classification. We have observed substantial

improvements in the performance of these algorithms
when applied to the NC-MCI classification task. Mainly,

customizing the AlexNet architecture has led to a

gradual increase in performance compared to the

previous binary classification task of NC-AD. However, it

is worth highlighting that the most outstanding

performance is attributed to the Siamese 4D-AlzNet

model, boasting an exceptional accuracy rate of 96.82%.

In comparison, the Siamese 4D-AlzNet model shares

a similar level of performance with the Frozen VGG-19

model, although it outperforms it by a margin of 0.84%.

Frozen VGG-16, for instance, achieved impressive

results, with a precision score of 91.47%, a recall rate of



Table 6. Proposed Siamese 4D-AlzNet and three customized models performance w.r.t accuracy, precision, F1-Score, and recall for the classification

of NC-MCI

Metrics Siamese 4D-AlzNet Frozen-VGG-16 AlexNet Frozen-VGG-19

Accuracy 96.82 91.88 88.27 95.98

Precision 96.49 91.47 85.71 94.48

F1-Score 94.24 91.58 88.13 96.04

Recall 92.1 91.7 90.71 97.66
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91.70%, and an F1 score of 91.47%. These metrics

emphasize the models ability to effectively and

accurately classify NC and MCI cases. We conducted a

detailed analysis using confusion matrices for a more

comprehensive understanding of the classification

algorithm performance. These matrices provide insights

into the variation in true positives and negatives, as

depicted in Fig. 6.
Fig. 6. Confusion matrix of proposed Siamese 4D-AlzNet and
Performance evaluation for MCI-AD

The results demonstrate the superior performance of the

proposed Siamese 4D-AlzNet model on the ADNI dataset

for MCI-AD, achieving an impressive accuracy rate of

95.43%, as described in Table 7. This accuracy

surpasses that of other pertained models by a

substantial margin, with differences of 0.55%, 4.48%,

and 14.99% for Frozen-VGG-19, Frozen-VGG-16, and
pre-trained techniques for binary class NC and MCI.



Table 7. Proposed Siamese 4D-AlzNet and three customized models performance w.r.t accuracy, precision, F1-Score, and recall for the classification

of MCI-AD

Metrics Siamese 4D-AlzNet Frozen-VGG-16 AlexNet Frozen-VGG-19

Accuracy 95.43 80.44 90.95 94.88

Precision 98.12 81.29 97.12 98.41

F1-Score 96.45 84.07 93.16 96.06

Recall 94.85 87.05 89.52 93.82
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customized AlexNet, respectively, in terms of MCI-AD

classification accuracy rate. Furthermore, the Siamese

4D-AlzNet model also excelled in the F1-Score, a

crucial aggregate measure that combines precision and

sensitivity. It achieved an outstanding F1-Score of

96.45%. This high F1-Score indicates the model’s ability

to balance precision and sensitivity effectively, which is

particularly important in medical applications like AD

diagnosis, as depicted in Fig. 7.
Fig. 7. Confusion matrix of Siamese 4D-AlzNet and pre
Performance evaluation for LMCI-AD

In Table 8, we present the classification scores for the

LMCI-AD classification task across various proposed

models. Notably, the AlexNet-based approach achieved

an accuracy of 77.61%, demonstrating its competence

in distinguishing between LMCI and AD. Furthermore,

this model exhibited a precision of 95.25%, an F1-Score

of 84.38%, and a recall rate of 75.74%. Similarly, the

Frozen VGG-19 model also delivered better results with
-trained techniques for binary class MCI and AD.



Table 8. Proposed Siamese 4D-AlzNet and three customized models performance w.r.t accuracy, precision, F1-Score, and recall for the classification

of LMCI-AD

Metrics Siamese 4D-AlzNet Frozen-VGG-16 AlexNet Frozen-VGG-19

Accuracy 79.16 78.34 77.61 80.70

Precision 98.56 99.28 95.25 96.97

F1-Score 86.05 85.46 84.38 86.45

Recall 76.36 74.89 75.74 78.01

Fig. 8. Confusion matrix of Siamese-4D-AlexNet and pre-trained techniques for binary class LMCI - AD.
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an accuracy of 80.70%. This model showed impressive

precision (96.97%), an F1-Score of 86.45%, and a recall

rate of 78.01%. On the other hand, the Frozen-VGG-16

model, while still achieving an accuracy of 78.34%,

demonstrated relatively lower performance than the

above-mentioned models. Its precision stood at 85.46%,

the F1-Score at 85.46%, and recall at 74.89%. Fig. 8 is

the representation of the confusion matrix of LMCI-AD

binary classification.
Comparison of Siamese 4D-AlzNet with customized
AlexNet, Frozen-VGG-16, and Frozen-VGG-19 models

Fig. 9 (A, B, C, and D) shows the relative significance of

the five binary classes based on its accuracy and F1-

Score performance across various techniques. The

comparison analysis of the NC class with AD, LMCI,

and MCI in A & B subfigures depicts the highest

accuracy/F1-Score of NC-LMCI and NC-MCI classes

over the NC-AD class. Similarly, the MCI-AD class has
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Fig. 9. Bar charts performance evaluation of five binary classes (A-D) in terms of accuracy and F1-Score.

Fig. 10. Box plot comparison analysis of proposed and pre-trained

models for NC-AD binary classification in terms of accuracy.
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the highest accuracy and F1-Score value evaluated by

Siamese 4D-AlzNet than the LMCI-AD binary class

among all techniques.
To further evaluate the performance of the proposed

Siamese 4D-AlzNet and pre-trained models in terms of

accuracy across epochs, Fig. 10 displays a comparative

box plot. The Siamese 4D-AlzNet framework

consistently achieves 70% and 95% accuracy. In

contrast, the pre-trained models exhibit accuracies

ranging from 50% to 85%, 70% to 85%, and 55% to

90% on different epochs, respectively.

Additionally, to evaluate the performance of the

suggested and trained models for two binary classes,

MCI and LMCI with AD, each having distinct precision

and recall values, were used for the experiment. The

four models are objectively compared and assessed in

the form of a comparison bar chart in Fig. 11. The

proposed Siamese 4D-AlzNet model showed the exact

binary classification results with a precession of 98.12%

and 94.85% precision, recall, respectively, for MCI-AD

class as compared to LMCI-AD. The precision of the

Frozen-VGG-19 model was 98.41%, with the recall

value significantly decreased, scoring 93.82%, which

changed the classification performance. Overall, while

performance is significantly affected by a single lowering

of the precision/recall values, it is clear that model

prediction performance rapidly declines with further

reductions.
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Fig. 11. Binary classification precision (orange) and recall (yellow) in percentage estimation among four models for MCI-AD and LMCI-AD are

shown in (A) and (B), respectively.
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DISCUSSION

In this section of our research paper, we critically discuss

the methodologies employed for feature extraction and

classification in AD identification using MRI data. We

explore the significance of deep learning and TL

algorithms. However, it is important to note that the

effectiveness of these methods often depends on the

quality of previously handcrafted features and

dimensionality reduction techniques, which may not

always yield optimal results in feature extraction. Deep

learning, particularly CNNs, primarily relies on gradient-

based evaluation metrics to guide feature selection (C.

F. Liu et al., 2019a). The choice of hyper-parameters

and network architecture, including the number of layers

and neurons, directly impacts the classification perfor-

mance. Therefore, the selection of appropriate parame-

ters is crucial for achieving accurate results in AD

detection (H. Wang et al., 2019).

In this article, we introduce a new approach called

Siamese 4D-AlzNet, designed with the primary goal of

early detection and identification of MCI. Early detection

is imperative as it provides an opportunity for

intervention and treatment before the condition

progresses to the advanced stages of AD. The siamese

4D-AlzNet approach is rooted in the fundamental

principles of deep learning. Our model relies on

comprehensive feature information extracted from MRI

images, and architecture includes four distinct

pathways. Within each pathway, multiple CNN blocks

are implemented, generating multiple outputs. The

inclusion of multiple outputs facilitates immediate

feedback during the early evaluation of error functions,

enhancing the model’s ability to adapt and learn

effectively. Dense layers are utilized in each block,

connecting to all layers within the same block. After the

outputs from the four pathways are extracted, these

outputs are associated and connected to the final

classifier layer for AD classification. In addition to our

Siamese 4D-AlzNet model, we also explore the

performance of Frozen VGG-19 and Frozen VGG-16

architectures with certain layers frozen and customized

pre-train AlexNet.

We have comprehensively compared the findings

from our proposed models, as detailed in Tables 9 and
10. In Table 9, we specifically focused on evaluating the

performance of the binary class NC-AD. In this context,

Ahmed et al. (2019) reported a maximum accuracy of

85.55%, which was achieved through an ensemble classi-

fier. Their approach also yielded commendable precision

(85.66%) and a recall score of 85.52%. Similarly,

Hajamohideen et al. (2023) achieved a 91.83% accuracy

for the classification of NC-AD.

Comparatively, our Siamese-4D-AlzNet demonstrated

a substantial performance improvement when contrasted

with other state-of-the-art techniques, showcasing

impressive gains of 9.52%, 3.24%, 5.87%, 7.86%, and

8.87% in terms of accuracy. Furthermore, the frozen

VGG-19 model also delivered noteworthy results, with

accuracy improvements of 8.53%, 2.25%, 4.88%, and

6.87%, respectively. These results underscore the

efficacy and superiority of our proposed Siamese-4D-

AlzNet model and the frozen VGG-19 model in the

classification of NC-AD. The substantial enhancements

in accuracy achieved by our models demonstrate their

potential to advance the state of the art in the early

diagnosis and treatment of AD.

Table 10 presents a comparative analysis of our

binary classification models for MCI-AD and other

techniques. Notably, Lin et al. introduced a supervised

CNN-based classification framework dedicated to the

early detection of MCI, achieving an impressive

accuracy score of 81.40% with a recall rate of 89.61%.

Similarly, another study proposed a 2D-CNN model that

delivered compelling results, boasting an 83.30%

accuracy rate, 78.60% precision, and an 84.60% recall

rate. Notably, our proposed models have shown

remarkable improvement in performance, consistently

enhancing accuracy by a significant margin, falling

within the range of 4–9%. This enhanced accuracy

signifies the robustness and effectiveness of our

approach in distinguishing MCI from AD. These findings

suggest that our models have the potential to provide

more reliable and accurate results, which can be

invaluable in the early diagnosis and intervention of

cognitive disorders.

Overall, our research demonstrates the potential of

deep learning techniques and the Siamese-4D-AlzNet

model, particularly for early detection of MCI, a crucial

step in Alzheimer’s disease management and



Table 9. I proposed a comparison of models with other state-of-the-art models in terms of accuracy, precision, and recall for the classification of NC-AD.

It achieved the highest accuracy rate, 95.07%

Methods Dataset Modality Accuracy (%) Precision (%) Recall (%)

Ensemble Classifier (Ahmed et al., 2019) ADNI MRI 85.55 85.66 85.52

Siamese CNN (Hajamohideen et al., 2023) ADNI MRI 91.83 – 91.79

ResRepANet (Chen et al., 2022) ADNI MRI 89.20 – 90.30

CNN (Tinauer et al., 2022) ADNI MRI 87.21 84.38 94.70

Hybrid CNN (Sethi et al., 2022) ADNI MRI 86.20 – –

CNN (Faisal and Kwon, 2022) ADNI MRI 97 – 98.40

CNN (Ieracitano et al., 2019) ADNI MRI 92.95 91.02 95.30

Ensemble (Ahmed et al., 2019) ADNI MRI 85.55 85.43 85.57

Frozen VGG-16 ADNI MRI 89.16 93.52 88.43

Frozen VGG-19 ADNI MRI 94.08 93.81 95.88

AlexNet ADNI MRI 76.81 80.57 79.65

Siamese 4D-AlzNet ADNI MRI 95.07 99.56 92.51

Table 10. Proposed models comparison with other state-of-the-art models in terms of accuracy, precision, and Recall for the classification of MCI-AD. It

achieved the highest accuracy rate of 95.43%

Methods Dataset Modality Accuracy (%) Precision (%) Recall (%)

CNN (Lin et al., 2018) ADNI MRI 81.40 – 89.61

Hybrid CNN (Sethi et al., 2022) ADNI MRI 84.90 – –

CNN (Heising and Angelopoulos, 2022) ADNI MRI 73.50 72.80 89.40

2D CNN (Park et al., 2023) ADNI MRI 83.30 78.60 84.60

CNN (Basaia et al., 2019) ADNI MRI 85.90 – 83.60

CNN (Carcagnı̀ et al., 2023) ADNI MRI 71.12 – –

CNN (Ieracitano et al., 2019) ADNI MRI 84.62 84.32 85.04

Frozen VGG-16 ADNI MRI 80.44 81.29 87.05

Frozen VGG-19 ADNI MRI 94.88 98.41 93.82

Customized-Alexnet ADNI MRI 90.95 97.12 89.52

Siamese-4D-AlzNet ADNI MRI 95.43 98.12 94.85

A. Mehmood et al. / Neuroscience 545 (2024) 69–85 83
intervention. The methodology presented in this article

contributes to the ongoing efforts to improve the

accuracy and timeliness of Alzheimer’s disease

diagnosis and, ultimately, patient care. The ADNI

dataset and MRI modality stand out as the primary

options for AD classification. Despite their widespread

use, effectively managing the entirety of the

neuroimaging modality presents a significant challenge

for researchers actively engaged in this field. The

limitation of this work to not handle multimodality data.

Addressing the persistent obstacle of handling complex

neuroimaging data in future work will involve

incorporating annotated data samples to tackle the

multimodality data issue. Additionally, introducing a

patch-based technique may enhance results when

working with multimodality data samples, offering a

potential avenue for improvement in the classification

process.

The Siamese 4D-AlzNet framework has been

presented in this research as a means of early detection

for MCI. The main objective is gradually acquiring

knowledge from low-level to high-level feature maps by

utilizing a CNN architecture composed of five unique

modules. The feature maps that arise from the

concurrent processing of input data by these five blocks

via four parallel streams are combined and forwarded to

the fully connected layers FC1 and FC2. We also

introduced three customized transfer learning-based

models by replacing and freezing specific layers. A set
of experiments has been performed on a dataset

consisting of four distinct classes: NC, MCI, Late MCI

(LMCI), and AD, all of which were preprocessed before

their extraction from the ADNI database. Our results

demonstrated the robust classification performance of

Siamese 4D-AlzNet across five pairs of binary classes.

Our customized transfer learning models, specifically

the frozen-VGG-19, exhibited superior performance in

brain disease classification compared to alternative

methods. In conclusion, the performance of the

Siamese 4D-AlzNet framework we have proposed for

the early detection of MCI is encouraging. This study

makes a significant intellectual contribution to the

domain of brain disease diagnosis by potentially

assisting in the prompt detection of individuals

susceptible to developing mild cognitive impairment.
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